1. DESCRIPTION

1-1 INTRODUCTION

PT650D is a kind of general weighing indicator, employing the latest technology for the reliable and best performance quality assurance, cost effective design which includes many functions. PT650D is suitable for all kinds of application such as hopper and weigh platform.

1

1-2 DEFINITION

Multiplier:

The multiplier determine the position of the decimal point or the number of tailing zero added to the internal reading.

For example:

If the internal reading is 234,

Multiplier	Display on indicator	
10	2340	
1	234	
.1	23.4	
.01	2.34	
.001	.234	
.0001	.0234	

Division:

The ratio of step width to multiplier. The value of division can only be one of the followings: 1, 2, 5.

Step width:

The difference between two consecutive reading of the scale.

Excitation voltage:

The voltage that supplied by the indicator to the load cell.

Load cell:

Load cell is a device that converts force to electronic voltage. A load cell consists of two parts. The first part is a sensor that can be linear distorted according to the force applied to it. The second part is the strain gauge element which changes its resistance according to the distortion of the sensor.

Load cell rated output:

The output voltage from the load cell divided by the excitation voltage.

Maximum capacity:

The maximum figure ignoring decimal point that designed to be used by the indicator.

Resolution:

The ratio of the maximum capacity and division.

Dead weight:

The output voltage of the load cell in response to the weight of the platform.

Span:

The change of reading from the indicator in response to the change of standard weight applied.

1-3 FEATURES

- Apply for all strain gauge load cell;
- Clear and stable 13mm 6 digitals LED display;
- gross weight and net weight can be selected;
- Display step width is selectable of 1, 2, 5, 10, 20 or 50;
- Numeric display "O.L." when overload;
- Display decimal point is selectable of 4 decimal places;
- Automatic zero tracking;
- Automatically set tare by push button;
- Delta-sigma conversion method;
- Internal resolution is 16,000,000 counts;
- Scale display resolution from 300 to 10,000;
- Conversion rate up to 200 times/sec;
- Software function setting method;
- External on/off switch for function and calibration setting protection;
- Option:

RS232/RS485 input and output port;

Hi/Lo comparator output (opto-couple, dielectric strength 80VDC, 300mA);

Parallel BCD output;

or Analog output;

- Optional software: single material batching control software.

2. SPECIFICATION

2-1 GENERAL

- 1. Mains supply : 110VAC, 220VAC±10%, 50/60Hz
- 2. Power consumption :9 VA
 - : -5° C to 50° C (23°F to 122°F)
- 3. Operating temperature 4. Relative Humidity : 90%(non-condensing)
- 5. Weight : Approx 0.45 kg

2-2 DIGITAL SECTION

1. Weight display	: 6 digits LED display
2. Display height	: 13mm
3. Annunciators	: Gross, Net, Zero, Motion and unit(kg/t)
4. Negative sign indication	: "-" on the left most digit
5. Over-range indication	: Display "O.L"
6. Maximum capacity	: 500 to 100,000
7. Step width	: 1, 2, 5, 10, 20 or 50
8. Decimal point	: Displays to four different decimal places

2-3 ANALOG SECTION

1. Load cell type	: All strain gauge load cell
2. Load cell supply	: 10VDC±5%, 150mA
3. Output sensitivity	: 0.5 μ V/D to 200 μ V/D
4. Input resistance	: More than $100M\Omega$ at 500VDC between each terminal
5. Zero point adjustment	: 0.05mV to 15mV
6. Span stability	: Bppm/ K of F.S
7. Zero stability	: ±0.4 μ VD.006% initial zero offset voltage)/K
8. Non-linearity	: Within 0.005% of F.S
9. Conversion method	: Delta-sigma
10. Conversion rate	: Up to 200 times/sec
11. Internal resolution	: 16,000,000
12. Maximum display resolution	: 10,000 divisions
13. Comparison cycle	: Approx 200 times/sec

4	PT650D instruction manual
14. Dielectric strength	: Between input terminal(common/earth/each opto-coupler output/analog output/BCD output), for 1 min, at 500VDC. Between power supply terminal and input terminal(common/earth/each opto-coupler output/analog output/BCD output), for 1 min, at 1500VAC.
OPTION:	(0.5)(0.20)(0.4/4.20)(0.4)(-1-(-1-1))
15. Analog of BCD output	20~5V, 0~20mA/4~20mA(selectable), parallel BCD
16. Serial output	: RS232 or RS485 option
17. Control output	: Four opto-coupler option
2-4 RS232/RS485 SERIAL OUTPUT (OPTION)	
1) STANDARD	: EIA-RS232/RS485 output
2) STREAM FROMAT	Data bit = 7 Parity bit = 1 (even) Stop bit = 1 Code = ASCII code Baud rate = 2400, 4800, 9600, 19200 Delimiter = CR/LF
3) RS232/RS485 MODE	,
a) Command mode:	After receiving the command word from RS232/RS485 port, the indicator will carry out the appropriate action, those command valid only for RS232/RS485 port.
Command:	READ <cr><lf> : request measured data TARE<cr><lf> : request TARE weight setting KEY<cr><lf> : key protection ON or OFF ZERO<cr><lf> : request ZERO value</lf></cr></lf></cr></lf></cr></lf></cr>
Example:	Read command (READ <cr><lf>) is "52H, 45H, 41H, 44H, 0DH, 0AH" in ASCII code.</lf></cr>
b) Continuous mode:	The data will be transferred constantly without any input command to the RS232/RS485 port.

4) DATA FORMAT:

STATUS 1 STATUS 2 WEIGHING DATA UNIT

STATUS 1:

OL = overload ST = stable

US = unstable

STATUS 2:

NT = net weight GS = gross weight

WEIGHING DATA:

An eight bits stream consists of "0" to "9", negative sign "-", positive sign "+", space " " and decimal point.

UNIT:

kg = kilogramt = ton

5) SCHEMATIC DIGRAM FOR THE OUTPUT PORT

Note: ID = XX, ST62(TERMINATER)on the mainboard should be set to "ON", a 200Ù impedance matching resistor is virtually added to communication terminal.

2-5 Hi/Lo COMPARATOR OUTPUT(OPTION)

1) Hi/Lo output	: HH, Hi, Lo or LL
2) Max. capacity	: 80VDC, 300mA

2-6 BCD OUTPUT(OPTION)

BCD output
 Parallel BCD output
 BCD output level
 TTL or open collector

2-7 ANALOG OUTPUT(OPTION)

- 1) Analog output mode $: 0 \sim 5V/0 \sim 20 \text{mA}/4 \sim 20 \text{mA}$
- 2) The excitation current will be reduced to 120mA if the 0~20mA/4~20mA output board is used.

2-8 INPUT(BUILT-IN)

1) Input	: IN1, IN2 or IN3
2) Input mode	: Passive switch

3) Input contact time : 30 ms

3. OPERATION

3-1 GENERAL RULES

Do not install the PT650D in direct sunshine, and avoid sudden temperature changes, vibration or wind.

Best performance is achieved when temperature is about 20° C or 68° F and the relative humidity is about 50%.

Ground the PT650D via the power cable to the rear terminal and ensure a good ground connection. Do not ground directly to other equipment.

Analog input/output signals are sensitive to electrical noise. Do not bind these cables together as it could result in cross-talk interference. Please also keep them well away from AC power cable, and keep all cable as short as possible.

If the local AC electrical supply fluctuates by more than±10% an AC regulator must be used in order to stabilize the power and reduce power spikes.

3-2 INPUT SENSITIVITY OF LOAD CELL

The input sensitivity (A) of load cell can be calculated from the following formula:

A = (Load cell output voltage at scale capacity - load cell output voltage at dead load) × Step width / Scale capacity

PT650D requires that "A" must be greater than or equal to $0.5 \,\mu$ V/D.

3-3 CONNECTING THE LOAD CELL TO THE INDICATOR

The analog output from the Load cell and the RS232/RS485 input/output signals are sensitive to electrical noise. Do not bind these cables together as it could result in cross-talk interference. Please also keep them well away from the AC power cables.

Load cell connections		
Pin no.	Signal	
EXC+ EXC- SIG+ SIG- SHD	Excitation+ Excitation - Signal + Signal - Shield	

4. INDICATOR AND KEYS 4-1 INDICATOR

	PT650D
	OGROSS ONET OMOTION OZERO Okg Ot
	MODE ■ TARE ▲ G/N ■ ZERO ▶
Function mode	: Display "FUNC" by pressing MODE and G/N keys
	for 2 seconds to enter the function mode
Calibration mod	e : Display "CAL" by pressing MODE and TARE keys
	for 2 seconds to enter the calibration mode
Hi/Lo setpoint m	ode: Display "SET" by pressing MODE and ZERO keys
	for 2 seconds to enter the Hi/Lo setpoint mode
Indicator On/Off	: Press MODE key for 3 seconds
kg/lb conversion	: Press G/N key for 2 seconds, unit is 1b while "kg"
	annunciator is flashing, and press G/N key for 2 seconds
	unit is kg.
	(Note: $1 \text{kg} = 2.2046 \text{ lb}$)

Note: For the setting modes, press and hold MODE key first, otherwise, no entry is accepted. When changing the entry before its completion, press MODE key to input again.

4-2 FRONT PANEL DESCRIPTION

1.	MODE	key: Entry the data or skips the span at calibration.
2.	G/N	key: Selects set data items or changes the gross/net value display
		or skips the zero at calibration.
3.	TARE	key: Shifts the setting digit at the time of data setting or change
		the display mode to net mode.
4.	ZERO	key: Select the setting digit at the time of data setting or if the
		zero offset is within 1% to 10% of maximum capacity, press this
		key to return to zero.
5.	GROSS	annunciator: Indicates gross weight is displayed
6.	NET	annunciator: Indicates net weight is displayed
7.	MOTION	annunciator: Indicates motion detection
8.	ZERO	annunciator: Indicates gross value is "0"
9.	kg	annunciator: Indicates unit is "kg"
0.	t	annunciator: Indicates unit is "ton"

Note: The decimal point in the setting digit will be blink at the time of data setting. The data entry can not be a negative value.

4-3 REAR PANEL DESCRIPTION

- 1. Mains power input terminal: AC, AC, EARTH
- 2. Load cell input terminal: SIG+, SIG-, EXC+, EXC-, SHIELD
- 3. Input terminal: IN1, IN2, IN3,COM
- 4. Hi/Lo comparison output terminal: HH, HI, LO, LL, EMTR COM Single material batch output terminal: OP, PL, FF, ZB, EMTR COM
- 5. Serial communicate terminal: TXD1, RXD1, COM
- 6. Analog signal output terminal: +, COM

5. FUNCTION SETTING

Enter function setting: Press and hold MODE key, then press G/N key, 2 seconds later, displays "FUNC", the function setting mode is selected, and set the data within "F0 0" to "F19 XX".

If the data is changed, enter the calibration mode.

Keys description:

ZERO key : Select the function No. (from F0 to F19 to F0).

TARE key : Change the data value(from FX 0 to 1,2.....).

Note: (1) Data setting by RS232/RS485 is possible.

- (2) If an error occurs, "ERROR X" will output from RS232/RS485.
- (3) When a "check sum" error occurs or there is the function change of "max.cap", "mult" or "step", PT650D is set to the "CAL" re-set mode(the message is automatically displayed). However, if the power supply is turn on/off under that state, it will enter the weighing mode.
- (4) Percentage of zero range can be ignored.

5-1 DATA SETTING

Enter the data setting:

Press and hold MODE key, then press G/N key, 2 seconds later, displays "FUNC".

2 seconds later

	PT650D	
[0 0 0 0 0 0	
. =		

2 seconds later

5-1-1 "F0 0" EXIT THE FUNCTION SETTING MODE

Press MODE key, accept the data, and enter the weighing mode, if press ZERO key, skip to the next setting.

5-1-2 "F1 0" ZERO TRACK TIME

Press TARE key to select

5-1-3 "F2 0" ZERO TRACK BAND

0 = 1 step width 1 = 2 step width 2 = 4 step width

0 = No track1 = 1 sec

5-1-4 "F3 0" MOTION DETECTION

- 0 = 1 step width/sec 1 = 3 step width/sec 2 = 5 step width/sec 3 = 10 step width/sec

5-1-5 "F4 0" MULTIPLIER OR DECIMAL POINT

5-1-6 "F5 0" DIVISION

Press TARE key to select	0 = 1
	1 = 2
P1650D	2 = 5
000000	

5-1-7 "F6 0" MAXIMUM CAPACITY

If the maximum capacity does not satisfy the following condition, it will show "ERROR 1" for 2 seconds, return to the F4 (decimal point) setting mode.

Maximum capacity ≥ 500 Maximum capacity $\leq 100,000$

Note: "ERROR 1" is also output to RS232/RS485.

Note: At the normal weighing mode, the zero return range is within 1% to 10% of maximum capacity by pressing ZERO key.

(aab)

5-1-15 "F14 0" RS485 ID CODE

Pre	ess TARE key to s	elect
	PT650D	
	0 0 0 0 0 0	
	F14 - B	ZERO

Note: This parameter will be activated only for RS485 option.

The ID code must not be the same as the other PT650D which connected to the same master device.

 $00 \sim 99$

ID = 00, only single device communication.

5-1-16 "F15 0" PEAK HOLD

0 = Peak hold is not valid

1 = Peak hold(automatically)

2 = Valley hold(automatically)

3 = Peak – valley hold(automatically)

4 = Peak hold(external)

5 = Valley hold(external)

6 = Peak - valley hold(external)

5-1-17 "F16 0" INPUT 1

Pre	ess	TARE	key	to sel	ect
	РТ	`650D			
	0	000) O C)	
	[-				
				ļĽ	ZERO
				•	l a

5-1-18 "F17 0" INPUT 2

5-1-19 "F18 0" INPUT 3

Press TARE key to select

0 = Function 1 = Zero 2 = Tare 3 = Gross/Net 4 = Print 5 = kg/lb 6 = On/Off 7 = Hold 8 = Peak hold

0 = Function

- 1 = Zero
- 2 = Tare

3 = Gross/Net

- 4 = Print
- 5 = kg/lb
- 6 = On/Off
- 7 = Hold
- 8 = Peak hold
- 0 =Function
- 1 = Zero
- 2 = Tare
- 3 = Gross/Net
- 4 = Print
- 5 = kg/lb
- 6 = On/Off
- 7 = Hold
- 8 = Peak hold

5-1-20 "F19 0" COMPARISON CONDITION

Press TARE key to select

0 = Gross weight

- 1 = Net weight
- 2 = Display weight

Note: Comparison output according to F19 setting.

5-2 FUNCTION SETTING BY RS232/RS485 (only for RS232 or RS485 option is installed)

Function setting can be activated by using RS232/RS485. At normal weighing mode, from RS232 port, input a command "FUNC<CR><LF>", the gross display will show "FUNC".

From RS485 port, input a command "<ENQ>IDXX<CR><LF>", indicator responds "<ACK>XX<CR><LF>", then input a command "FUNC<CR><LF>", the gross display will show "FUNC".

PT650D	
000000	
[- ,-	

<u>Command input</u> <ENQ>IDXX<CR><LF> (RS485) FUNC<CR><LF> PT650D responds <ACK>XX<CR><LF> (RS485)

 $7 \text{ TR} \Delta C K \text{ T=} 0 < C \text{R} > 1 \text{ F>}$

5-2-1 ZERO TRACK TIME

Input 0 or 1, $0 = no$ zero track, $1 = 1$ sec	
1 <cr><lf></lf></cr>	Z.TRACK T=1 <cr><lf></lf></cr>
Input N for next setting	
N <cr><lf></lf></cr>	

5-2-2 ZERO TRACK BAND

Z.TRACK D=1<CR><LF> Input 1, 2 or 4 step width 2<CR><LF> Input N for next setting N<CR><LF> Z.TRACK D=2<CR><LF>

10	
5-2-3 MOTION DETECTION	
	MOTION ID/S <cr><lf></lf></cr>
Solution input 1, 3, 5 or 10 step width $3 < CR > $	MOTION 3D/S <cr><lf></lf></cr>
Input N for next setting N <cr><lf></lf></cr>	
5-2-4 DECIMAL POINT	
Input 0, 1, 2, 3 or 4 0 = no decimal	D.P 4 <cr><lf></lf></cr>
1 = XXX.X $2 = XXX.XX$ $3 = XX.XXX$ $4 = X.XXXX$ Input N for next setting $N < CR > < LF >$	D.P 0 <cr><lf></lf></cr>
5-2-5 MULTIPLIER (It is possible to modify t	he multiplier only when no decimal
point is set)	MULT 1 <cr><lf></lf></cr>
Input 1 or 10 10 <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	MULT 10 <cr><lf></lf></cr>
5-2-6 DIVISION	
	d 1 <cr><lf></lf></cr>
Input 1, 2 or 5 5 <cr><lf> Input N for next setting</lf></cr>	d 5 <cr><lf></lf></cr>
N <cr><lf></lf></cr>	
5-2-7 MAXIMUM CAPACITY	MAX.CAP 500 <cr><lf></lf></cr>
Input one of the 22 selection of maxim	um capacity between 500 to 100,000
3500 <cr><lf></lf></cr>	NO ? <cr><lf></lf></cr>
100000 <cr><lf> Input N for next setting</lf></cr>	MAX.CAP 100000 <cr><lf></lf></cr>

If there is any error in the maximum capacity, step width and multiplier, error message "ERROR 1" will be sent out, PT650D will return to 5-2-4.

N<CR><LF>

5-2-8 RS232/RS485 BAUD RATE	BAUD 2400 <cr><lf></lf></cr>
Input 2400, 4800, 9600 or 19200 9600 <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	BAUD 9600 <cr><lf></lf></cr>
5-2-9 UNIT Input kg or t, kg = kg, t = ton	UNIT kg <cr><lf></lf></cr>
Lt <cr><lf> kg<cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr></lf></cr>	UNIT t <cr><lf> UNIT kg<cr><lf></lf></cr></lf></cr>
5-2-10 ZERO RETURN RANGE	Z.RANGE 1 <cr><lf></lf></cr>
Input I to I0 3 <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	Z.RANGE 3 <cr><lf></lf></cr>
5-2-11 DIGITAL FILTER	
Input one of the 10 selection of digital filtering betw 4 <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	D.FILTER 0 <cr><lf> /een 0 to 512 D.FILTER 4<cr><lf></lf></cr></lf></cr>
5-2-12 DISPLAY UPDATE RATE	DSP RATE 1 <cr><lf></lf></cr>
Input 1, 4, 8, 16 and 20 times/sec 4 <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	DSP RATE 4 <cr><lf></lf></cr>
5-2-13 BCD OUTPUT RATE	
Input 4, 8, 16, 20, 60, 80, 100 and 200 times/sec 8 <cr><lf></lf></cr>	BCD RATE 4 <cr><lf></lf></cr>
Input N for next setting N <cr><lf></lf></cr>	
5-2-14 ID CODE	ID NO 00 <cr><lf></lf></cr>
Input 00 to 99 01 <cr><lf> Input N for next setting</lf></cr>	ID. NO. 01 <cr><lf></lf></cr>
N <cr><lf></lf></cr>	

5-2-	-15 PEAK HOLD Input OFF, PEAK AUTO, VALLEY AUTO, PEAK VALLEY AUTO, PEAK EXT, VALLEY EXT and PEAK VALLEY E PEAK AUTO <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	PEAK HOLD OFF <cr><lf> XT PEAK AUTO<cr><lf></lf></cr></lf></cr>
5-2-	-16 INPUT 1 Input FUNC, ZERO, TARE, G/N, PRINT, kg ON/OFF, HOLD and PEAK HOLD FUNC <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	INPUT1 FUNC <cr><lf> g/lb, INPUT1 FUNC<cr><lf></lf></cr></lf></cr>
5-2-	-17 INPUT 2 Input FUNC, ZERO, TARE, G/N, PRINT, kg ON/OFF, HOLD and PEAK HOLD kg/1b <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	INPUT2 PEAK HOLD <cr><lf> g/lb, INPUT2 kg/lb<cr><lf></lf></cr></lf></cr>
5-2-	-18 INPUT 3 Input FUNC, ZERO, TARE, G/N, PRINT, kg ON/OFF, HOLD and PEAK HOLD HOLD <cr><lf> Input N for next setting N<cr><lf></lf></cr></lf></cr>	INPUT3 PRINT <cr><lf> g/lb, INPUT3 HOLD<cr><lf></lf></cr></lf></cr>
5-2-	 -19 COMPARISON CONDITION Input GROSS, NET and DISPLAY DISPLAY<cr><lf></lf></cr> Input R to return to normal weighing mode R<cr><lf></lf></cr> Note: When maximum capacity, division or n must be calibrated again and reset the F 	COMPARISON GROSS <cr><lf> COMPARISON DISPLAY<cr><lf> YES<cr><lf> nultiplier is changed, system Hi/Lo setpoint, the display</lf></cr></lf></cr></lf></cr>

of PT650D will show "CAL1".

6. CALIBRATION

- * Zero tracking can not be performed at calibration.
- * The weighing data can be accepted only when motion is not detected in calibration.
- * When an error occurs, error message will output from RS232/RS485.

6-1 DURING SPAN SETTING

1. Span setting when step width and multiplier are set.

STEP WIDTH

 $9 \leftarrow 10^{\circ}$ 5 7 8 0 1 2 3 6 L 1 4 6 2 At "2" 8 0 ← Actual value 0 5 At "5" ← Actual value

Also applied to 10^1 digit at a step width of 10, 20 or 50.

- 2. When multiplier is set to \times 10, no 10⁰ digit can be set.
- 3. When multiplier, maximum capacity or step width is changed or check sum error occurs, the setting can not quit by pressing the MODE key(data must be reset).

6-2 SETTING STEPS

6-2-1 CALIBRATION 1(by using standard weight)

Press and hold MODE key, then press TARE key, 2 seconds later, display "CAL 1", and enter the calibration 1.

2 seconds later, enter the calibration 1

Press ZERO key, display as follows, and enter the zero calibration.

1. ZERO CALIBRATION Zero calibration 1 (according to the last zero)

If there is not necessary to calibrate the zero offset, press $\boxed{\text{ZERO}}$ key and $\boxed{\text{G/N}}$ key to skip the zero calibration procedure, and enter the next setting.

Zero calibration 2 (calibrate the new zero)

Calibrate zero offset, press the ZERO key and MODE key to accept the tare value equals to 0.

2. SPAN CALIBRATION

Span calibration 1 (according to the last span)

After performing the zero calibration without error, the indicator will display $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$. Press MODE key to return to normal weighing condition if only zero adjustment is required.

Span calibration 2 (calibrate the new span)

Put the standard weight which equals to the scale capacity to the weighing platform, use the ZERO key and the TARE key to set the reading of the indicator exactly the same as the value of the standard weight, press MODE key to perform the calibration.

Note: The minimum weight required is 100 division.

6-2-2 CALIBRATION 2 (data input)

Press and hold MODE key, then press TARE key, 2 seconds later, display "CAL 1", then press TARE key, display "CAL 2", and enter the calibration 2.

PT650D	
0 0 0 0 0 0	
	TARE

2 seconds later,

Press TARE key, displays "CAL 2", and enter the calibration 2.

PT650D	
0 0 0	000
	- -

Press ZERO key, and enter the zero calibration.

1. ZERO CALIBRATION

Zero calibration 1(according to the last zero)

If there is not necessary to calibrate the zero offset, press ZERO and $\overline{G/N}$ keys to skip the zero calibration procedure, enter the next setting.

Zero calibration 2(calibrate the new zero)

Calibrate zero offset, press the ZERO and MODE keys to accept the tare value equals to 0.

2. SPAN CALIBRATION

Voltage setting

> Max. capacity = 1.9998 mV/VInput = 1.8997 mV/V.

Span calibration

Press G/N key to enter span calibration, or press MODE key to return to normal weighing mode.

Press ZERO and TARE keys to enter span value when "gross" annunicator is lit steady, and press MODE key to perform span calibration. Note: The minimum weight required is 100 division.

6-3 ERROR CODE DURING CALIBRATION

ERROR 1 : Incorrect setting for multiplier, division, or maximum capacity.

- ERROR 2 : Incorrect wiring between load cell and indicator, voltage for zero value is greater than the voltage for span value.
- ERROR 3 : Input voltage too low.

The dead weight of the weighing platform may be too light. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX+ and SG+.

- ERROR 4 : Input voltage too high The dead weight of the weighing platform may be too heavy. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX + and SG-.
- ERROR 5 : Input sensitivity of load cell is out of range.
- ERROR 6 : Load cell output voltage at scale capacity is too high.
- ERROR 7 : Zero offset is greater than zero return range.

6-4 CALIBRATION BY USING RS232/RS485(only for RS232 or RS485 option is installed)

6-4-1 Calibration function can be activated by using RS232/RS485 At normal weighing mode, from RS232 port, input a command "CAL – 1<CR><LF>", the gross display will show "CAL1". From RS485 port, input a command "<ENQ>IDXX<CR><LF>", indicator respond "<ACK>XX<CR><LF>", then input a command "CAL – 1<CR><LF>", the gross display will show "CAL1".

Command input <ENQ>IDXX<CR><LF> (RS485) CAL _ 1<CR><LF> PT650D response <ACK>XX<CR><LF>(RS485)

1. ZERO CALIBRATION

CAL ZERO<CR><LF>

Input N,R or J

N = Perform a zero offset calibration

R = Return to normal weighing condition without any adjustment.

J = Skip the zero offset calibration.

Note: If maximum capacity, division or multiplier was changed and no calibration is performed after the modification, then the R command will be invalid.

Input N to perform zero offset calibration when there is no motion detected and no load on the weighing platform.

N <cr><lf></lf></cr>	Error	3 < CR > <lf></lf>
N <cr><lf></lf></cr>	Error	4 < CR > < LF >

Error 3 : Input voltage too low. The dead weight of the weighing platform may be too light. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX+ and SG+.

Error 4 : Input voltage too high. The dead weight of the weighing platform may be too heavy. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX+ and SG-.

N<CR><LF> YES<CR><LF> YES = Zero offset calibration is performed.

2. SPAN CALIBRATION

After performing the zero calibration without error, the message "YES" and "CAL SPAN" will be sent out.

Input R to return to normal weighing condition, and system was only performed a zero offset calibration.

Note: If maximum capacity, division or multiplier was changed and no calibration is performed after the modification, the "R" command will be invalid.

10000 <cr><lf></lf></cr>	Error	2 < CR > < LF >
5000 <cr><lf></lf></cr>	Error	6 <cr><lf></lf></cr>
20000 <cr><lf></lf></cr>	Error	1 <cr><lf></lf></cr>

Error 1 : Incorrect setting for multiplier, division or maximum capacity.

Error 2 : Incorrect wiring between load cell and indicator. Voltage for zero value is greater than the voltage for span value.

Error 5 : Input sensitivity of load cell is out of range.

Error 6 : Load cell output voltage at scale capacity is too high.

100000<CR><LF>

CAL SPAN 100000<CR><LF> YES<CR><LF>

YES = Calibration completed

Input "R" command to return to normal weighing condition.

6-4-2 Calibration function can be performed by entering the sensitivity via RS232/RS485

At normal weighing mode, from RS232 port, input a command "CAL2<CR><LF>", the gross display will show "CAL2". From RS485 port, input a command "<ENQ>IDXX<CR><LF>", indicator respond "<ACK>XX<CR><LF>", then input a command "CAL2<CR><LF>", the gross display will show "CAL2".

PT650D	
000000	

Command <ENQ>IDXX<CR><LF> (RS485) CAL2<CR><LF> PT650D response <ACK>XX<CR><LF>(RS485)

1. ZERO CALIBRATION

CAL ZERO<CR><LF>

Input N, R or J

- N = Perform a zero offset calibration
- R = Return to normal weighing condition without any adjustment.
- J = Skip the zero offset calibration.
- Note: If maximum capacity, division or multiplier was changed and no calibration is performed after the modification, then the R command will be invalid.

Input N to perform zero offset calibration when there is no motion detected and no load on the weighing platform.

N <cr><lf></lf></cr>	Error	3 <cr><lf></lf></cr>
N <cr><lf></lf></cr>	Error	4 <cr><lf></lf></cr>

Error 3 : Input voltage too low.

The dead weight of the weighing platform may be too light. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX+ and SG+.

Error 4 : Input voltage too high.

The dead weight of the weighing platform may be too heavy. Add a 1% metal film resistor of $50K\Omega$ to $500K\Omega$ between EX+ and SG-.

N<CR><LF> YES<CR><LF> SPIN 1.5000 mV/V<CR><LF>

2. Span voltage setting

After performing the zero calibration without error, the message "YES" and "SPIN 1.5000mV/V" will be sent out.

Input "R" command to return to normal weighing condition.

10000<CR><LF> SPIN 1.0000mV/V<CR><LF>

Note: input value = (span voltage – zero voltage) / excitation voltage

3. SPAN CALIBRATION

After setting completion, input "N" to enter span setting

N <cr><lf></lf></cr>	SPAN 1000 <cr><lf></lf></cr>
1500 <cr><lf></lf></cr>	SPAN 1500 <cr><lf></lf></cr>

Input "R" command to return to the normal weighing condition.

R<CR><LF> YES<CR><LF>

7. DISPLAYED VALUES AND OUTPUT VALUES

The relationship between gross, net and maximum display values are as follows. Those values are applied to BCD and RS232/RS485 output.

- (1) Gross display value = Gross value \times (step width \times multiplier) TARE function will be accepted when motion is not detected.
- (2) Net display value = Gross value tare value
 TARE function will not be accepted when gross display value is less than zero.
- (3) Maximum display value = Maximum capacity + $(9 \times \text{step width} \times \text{multiplier})$

When the gross value exceeds the maximum displayed value (even when the net displayed value is being displayed), the indicator displays "O.L", and displays the gross value when the loading is within weighing range.

8. SETTING THE SETPOINT

- (1) All data are gross display value.
- (2) Shifts to the higher digit every time from 10^0 digit to 10^4 digit by pressing the ZERO key.

Shifts to a greater value every time from 0 to 9 by pressing the TARE key.

(3) Set the 10^0 or 10^1 digit, independently of step width or multiplier.

(4) Display the data from HH to LL one by one through the indicator.

Display:	▼	▼	▼	▼
	GROSS	NET	MOTION	ZERO
Comparison setpoint:	HH	HI	LO	LL

8-1 SETTING SETPOINT

Enter the comparison setpoint setting: Press and hold MODE key, then press ZERO key, 2 seconds later, displays "SET".

PT650D	MDOE
0 0 0 0 0 0	

2 seconds later

PT6	50E)				
0	0	0	0	0	0	
		: :-				
]					

2 seconds later

PT650D
<u> </u>

Step 1: HIGH HIGH setpoint setting (HH)

PT650D	TARE
<u> </u>	
	ZERO

The display value is HH setpoint when the annunciator of GROSS is lit, select digit by pressing ZERO key and set the data by pressing TARE key.

PT650D	
$\underbrace{}_{i} _{i} \underbrace$	

Accept the data by pressing MODE key, and enter the step 2.

Step 2: HIGH setpoint setting (HI)

PT650D	
$\circ \underbrace{\otimes} \circ \circ \circ \circ \circ$	
	ZERO

The display value is HI setpoint when the annunciator of NET is lit, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key, and enter the step 3.

Step 3: LOW setpoint setting (LO)

PT650D	TARE
$\circ \circ _{i} {\otimes} \circ \circ \circ \circ$	
	ZERO

The display value is LOW setpoint when the annunciator of MOTION is lit, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key, and enter the step 4.

Step 4: LOW LOW setpoint setting (LL)

PT650D	
0 0 0 漢 0 0	
	ZERO

The display value is LL setpoint when the annunciator of ZERO is lit, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key.

Step 5: HIGH HIGH hysteresis setpoint setting (HH-S)

The display value is HH-S setpoint when the annunciator of GROSS is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key, and enter the step 6.

Step 6: HIGH hysteresis setpoint setting (HI-S)

PT650D	
	TARE
	and a
	ZERO

The display value is HH-S setpoint when the annunciator of NET is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

PT650D	
0 🔆 0 0 0 0	
<u></u>	
	MODE

Accept the data by pressing MODE key, and enter the step 7.

Step 7: LOW hysteresis setpoint setting (LO-S)

PT650D	
000000	
<u> </u>	
	ZERO

The display value is LO-S setpoint when the annunciator of MOTION is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key, and enter the step 8.

Step 8: LOW LOW hysteresis setpoint setting (LL-S)

PT650D	
000-0-00	
	e)
	ZERO

The display value is LL-S setpoint when the annunciator of ZERO is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key.

Step 9: Exit the comparison setting

Press MODE key to return to normal weighing mode.

An error will occurs if the setting condition is not satisfied:

 $HH \ge HI \ge LO \ge LL$, press <u>MODE</u> key to restart from step 1 to step 4. Note: If one of the setpoint value is zero then the value will not be used for comparison. For example: HH = 00, then "HH" is invalid.

8-2 SETTING SETPOINT BY USING RS232/RS485 (only for RS232 or RS485 option is installed)

Comparison setpoint can be activated by using RS232/RS485.

At normal weighing mode,

From RS232 port, input a command "SET <CR><LF>", the gross display will show "SET".

From RS485 port, input a command "<ENQ>IDXX<CR><LF>", indicator responds "<ACK>XX<CR><LF>", then input a command "SET <CR><LF>", the gross display will show "SET".

PT6	50I)				
0	0	0	0	0	0	
<u>-</u>		1				
]					

Command input	<u>PT650</u> E	PT650D response		
<enq>IDXX<cr><lf>(RS485)</lf></cr></enq>	<ack></ack>	<ack>XX<cr><lf> (RS485</lf></cr></ack>		
SET <cr><lf></lf></cr>				
	S-HH	0 < CR > <lf></lf>		
Step 1: HIGH HIGH setpoint setting (HH)				
4000 <cr><lf></lf></cr>	S-HH	4000 <cr><lf></lf></cr>		
Input N for next step				
N <cr><lf></lf></cr>	S-HI	0 <cr><lf></lf></cr>		
Step 2: HIGH setpoint setting (HI)				
3000 <cr><lf></lf></cr>	S-HI	3000 <cr><lf></lf></cr>		
Input N for next step				
N <cr><lf></lf></cr>	S-LO	0 <cr><lf></lf></cr>		
Step 3. LOW setpoint setting (LO)				
100 <cr><lf></lf></cr>	S-LO	100 <cr><lf></lf></cr>		
Input N for next step	2 20			
N <cr><lf></lf></cr>	S-LL	0 <cr><lf></lf></cr>		
Stop 4: LOW LOW sotpoint sotting (LL)				
Step 4. LOW LOW setpoint setting (LL) $40 < CP > LF >$	S I I	10-CD>-I F>		
40×CR× <li× Input N for next stop</li× 	S-LL	40 <ck<\li< td=""></ck<\li<>		
M/CP/LE	ин с	400~CP~/IE>		
N-CR-~LI-	111-5	400 <ck<</ck<		
Step 5: HIGH HIGH hysteresis setpoint settin	g (HH-S)			
50 <cr><lf></lf></cr>	HH-S	50 < CR > <lf></lf>		
Input N for next step				
N <cr><lf></lf></cr>	HI-S	40 <cr><lf></lf></cr>		

Step 6: HIGH hysteresis setpoint setting (HI-S)		
50 <cr><lf></lf></cr>	HI-S	50 <cr><lf></lf></cr>
Input N for next step		
N <cr><lf></lf></cr>	LO-S	30 <cr><lf></lf></cr>
Step 7: LOW hysteresis setpoint setting (LO-S)		
20 <cr><lf></lf></cr>	LO-S	20 <cr><lf></lf></cr>
Input N for next step		
N <cr><lf></lf></cr>	LL-S	30 <cr><lf></lf></cr>
Step 8: LOW LOW hysteresis setpoint setting (LL-S)	
20 <cr><lf></lf></cr>	LL-S	20 <cr><lf></lf></cr>
Input N for next step		
N <cr><lf></lf></cr>	S-HH	4000 <cr><lf></lf></cr>

An error will occurs if the setting condition is not satisfied: $HH \ge HI \ge LO \ge LL$, press N<CR><LF> to restart from step 1 to step 8. If one of the setpoint value is zero then the value will not be used for comparison.

Step 9: Return to normal weighing mode

Press R to return to the norma	l weighing mode
R <cr><lf></lf></cr>	YES <cr><lf></lf></cr>

9. OUTPUT/INPUT

9-1 COMPARISON OUTPUT(OPTION)

9-1-1 COMPARISON CONDITION

- If comparison condition F19 = 0, HH output on = gross weight value > HH setpoint HI output on = gross weight value > HI setpoint LO output on = gross weight value < LO setpoint LL output on = gross weight value < LL setpoint
- 2) If comparison condition F19 = 1, HH output on = net weight value > HH setpoint HI output on = net weight value > HI setpoint LO output on = net weight value < LO setpoint LL output on = net weight value < LL setpoint
- 3) If comparison condition F19 = 2, When displays gross weight value, HH output on = gross weight value > HH setpoint HI output on = gross weight value > HI setpoint LO output on = gross weight value < LO setpoint LL output on = gross weight value < LL setpoint When displays net weight value, HH output on = net weight value > HH setpoint HI output on = net weight value > HI setpoint LO output on = net weight value < LO setpoint LO output on = net weight value < LO setpoint LL output on = net weight value < LL setpoint

9-1-2 COMPARISON RATE

200 times/sec

9-1-3 COMPARATOR OUTPUT DESCRIPTION

OPEN COLLECTOR INPUT	RS232 ANALOG OUT
ΦΦΦΦΦΦΦΦ	
HH HI LO LL EMTR IN2 IN3 COM	TXD1 RXD1 COM + COM
	h high gate aint

пп	righ lingh setpoliti
HI	High setpoint
LO	Low setpoint
LL	Low low setpoint
EMTR COM	Common of HH, HI, LO, LL

The output capacity is 5VDC to 24VDC and the max. current is 0.3A. Isolate PT650D from external controlled devices in order to reduce interference. Diode should be connected in parallel with the DC operated buffer relay to suppress any spark noise caused by contact switching.

9-1-4 COMPARISON OPTION

9-1-5 THE INSTALLATION OF COMPARISON OPTION

9-2 INPUT

9-2-1 INPUT CODE DESCRIPTION

0 = Function	When input terminal is open, the function setting and		
	calibration procedure is invalid,		
	When input terminal is short, the function setting and		
	calibration procedure is valid.		
	If other value is selected, the lock function is invalid.		
1 = Zero	When the opto-coupler input is activated, this is the same		
	function as pressing the ZERO key at the keyboard.		
2 = Tare	When the opto-coupler input is activated, this is the same		
	function as pressing the TARE key at the keyboard.		
3 = Gross/Net	When the opto-coupler input is activated, this is the same		
	function as pressing the G/N key at the keyboard.		

4 = Print	When the opto-coupler input is activated, the displayed value
	will be sent via the RS232/RS485 serial port.
5 = kg/1b	When the opto-coupler input is activated, the displayed value
	will be changed in between the kg or 1b.
6 = On/Off	When the opto-coupler input is activated, the display will be
	turned on or off.
7 = Hold	When the opto-coupler input is activated, the current
	measured value will be hold until the input is invalid.
8 = Peak hold	When the opto-coupler input is activated, and the
	corresponding peak, valley or peak – valley function, the
	weighing figure will be held until the peak hold input is
	invalid.

9-2-2 INPUT DESCRIPTION

Note: The input contact is passive switch and short time is 30ms.

9-3 RS232/RS485 OUTPUT(OPTION)

9-3-1 RS232/RS485 DATA

OPEN COLLECTO	OR INPUT	RS232 /RS485	ANALOG OUT	
$\Phi \Phi \Phi \Phi$	00000	DOOC	$\overline{\Phi}\Phi$	
HH HI LO LL E COM	EMTR IN2 IN3		+	— PS222
(COM	TXD1 RXD1 C	OM	RS485
Baud rate	: 240	0, 4800, 9	9600, 19	200
Data bit	: 7 bi	ts		
Stop bit	: 1 bi	t		
Parity bit	:1 (e	ven)		
Code	: AS0	CII		
Delimited	: CR/	′LF		

9-3-2 COMMUNICATION MODE

Continuous mode:

- (1) Output the weighing data continuously.
- (2) The output times according to the BCD setting times. Select 4, 8, 16 or 20 times/sec at 19200 baud.
 Select 4, 8, 16 or 20 times/sec at 9600 baud.
 Select 4 or 8 times/sec at 4800 and 2400 baud.

Command mode:

Command input	<u>PT650D</u>	response	Description
READ <cr><lf></lf></cr>	ST,GS,+ ST,NT,+	1234kg <cr><lf> 200kg<cr><lf></lf></cr></lf></cr>	. Weight data output, output gross data(GS) from RS232 when display gross weight, output net data(NT) from RS485 when display net weight.
TARE <cr><lf></lf></cr>	TARE	12345 <cr><lf></lf></cr>	. Responds the tare value
TARE ON <cr><lf></lf></cr>	YES <cr></cr>	<lf> or NO ? <cr><lf></lf></cr></lf>	. Set tare
TARE OFF <cr><lf></lf></cr>	YES <cr></cr>	<lf> or NO ? <cr><lf></lf></cr></lf>	. Reset tare
TARE XXXX <cr><lf></lf></cr>	YES <cr></cr>	<lf> or NO ? <cr><lf></lf></cr></lf>	. Set tare (max. cap.≧tare value)
ZERO <cr><lf></lf></cr>	ZERO	1234 <cr><lf></lf></cr>	. Responds the zero Value

ZERO ON <cr><lf></lf></cr>	YES <cr><lf> or NO ? <cr><lf></lf></cr></lf></cr>	. Zero return range is 1 to 10 percentage of max. capacity, same as press "ZERO" key.
ZERO OFF <cr><lf></lf></cr>	YES <cr><lf> or NO ? <cr><lf></lf></cr></lf></cr>	. Reset the zero offset
KEY <cr><lf></lf></cr>	KEY ON <cr><lf> or KEY OFF<cr><lf></lf></cr></lf></cr>	. Key on or off
KEY ON <cr><lf></lf></cr>	YES <cr><lf> or NO ? <cr><lf></lf></cr></lf></cr>	. Key protection on (key function inhibit)
KEY OFF <cr><lf></lf></cr>	YES <cr><lf> or NO ? <cr><lf></lf></cr></lf></cr>	. Key protection off (key function enable)
PROG <cr><lf></lf></cr>	Command	. Set RS232 operation mode as command mode
CONT <cr><lf></lf></cr>	Command	. Set RS232 operation mode as continuous mode
FUNC <cr><lf></lf></cr>	Command	. Activate the function setting
CAL u 1 <cr><lf></lf></cr>	Command	. Activate the calibration setting
CAL2 <cr><lf></lf></cr>	Command	. Activate the calibration setting
J <cr><lf></lf></cr>	Command	. Jump from zero calibration
SET <cr><lf></lf></cr>	Command	. Activate the setpoint setting
N <cr><lf></lf></cr>	Command	. Jump to next step, used with "FUNC", "CAL", and "SET".
R <cr><lf></lf></cr>	Command	. Return to normal weighing condition, used with "FUNC", "CAL" and "SET".
<enq>IDXX<cr><lf></lf></cr></enq>	Command	. Select the ID code for PT650D

9-3-3 WEIGHING DATA OUTPUT

Input "READ<CR><LF>"command after receiving the command from RS232/RS485, the output data is same as the data in continuous mode.

NO.1 2 3 4 5	6 7 8 9 10 11 12 13 14 15 16 17 18
0 L , N T	, -1234.57kg _{CRLF}
NO. 1,2	: Status 1 : OL overload : ST stable : US unstable
NO. 3	: "," 2C (HEX)
NO. 4,5	: Status 2 : NT net weight : GS gross weight
NO. 6	: "," 2C (HEX)
NO. 7	: Polarity : "+" positive : "-" negative
NO. 8 - 14	: Weighing data If there is no decimal point, position No.8 will replaced by a space.
NO.15, 16	: Unit kg, t
NO.17, 18	: Control code CR, LF

9-3-4 RS232 AND RS485 OPTION

9-3-5 THE INSTALLATION OF RS232/RS485 OPTION

9-4 BCD DATA OUTPUT INTERFACE(OPTION) 9-4-1 PIN DESCRIPTION

<u>Pin No.</u>	Signal	<u>Pin No.</u>	<u>Signal</u>
1	BCD1	18	BCD20000
2	BCD2	19	BCD40000
3	BCD4	20	BCD80000
4	BCD8	21	BCD100000
5	BCD10	22	LO= Negative polarity
6	BCD20	23	LO= Overload
7	BCD40	24	Print
8	BCD80	25	LO= Gross
9	BCD100	26	LO= Motion detected
10	BCD200	27	LO= kg
11	BCD400	28	N.C.
12	BCD800	29	LO= Decimal point 1/10
13	BCD1000	30	LO= Decimal point 1/100
14	BCD2000	31	LO= Decimal point 1/1000
15	BCD4000	32	LO= Decimal point 1/10000
16	BCD8000	33	Ground
17	BCD10000	34	Ground
Numeri	ic data(6 digits)	21 bits	(positive logic)
Polarity	/	1 bit	(LO = negative)
Overloa	ad	1 bit	(LO = overload)
Decima	al point	4 bits	(LO = select digit)
GROSS	S/NET	1 bit	(LO = GROSS)
MOTIC	DN	1 bit	(LO = unstable)
PRINT	COMMAND	1 bit	(positive pulse, 5ms)
UNIT		1 bits	(LO = kg)
	,	Total 31 bits	

Note: The output period depends on function data. Output even if data is out of the range.

9-4-2 BCD

2	8	2	8	2	8	2	8	2	8	POL	PRINT COM.	MOTION	N.C.	DP2	DP4	D.GND
2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
1	3	5	7	9	11	13	15	17	19	21	23	25	27	39	31	33
1 1($\frac{4}{5^{0}}$	1 1($\frac{4}{5^{1}}$	1 1($\frac{4}{2}$	1 1	$\frac{4}{0^{3}}$	1 1	$\frac{4}{0^4}$	1 10	OVER	GROSS/NET	UNIT	DP1	DP3	D.GND

9-4-3 BCD OPTION

9-4-4 THE INSTALLATION OF BCD OPTION

9-5 ANALOG OPTION

9-5-1 SPECIFICATION

Resolution	:	1/10000
Accuracy	:	0.5% F.S

Output	0~5V	0~20mA	4~20mA
load resistor	Min.10 K Ω	Max.500 Ω	Max.500 Ω
Output voltage/current when display value equals to 0	0V	0mA	4mA
Output voltage/current when display value equals to Max. capacity	5V	20mA	20mA

9-5-2 PIN No. DESCRIPTION

- COM : Analog output -
- + : Analog output +
- * The excitation current will be reduced to 120mA if the 0~20mA/4~20mA output board is used.

 \oplus

CN104

Note: VR102 No need adjust VR101 Span adjust VR100 Zero adjust

9-5-4 THE INSTALLATION OF ANALOG OPTION

VR2 Span adjust

10. DIMENSION

11. APPENDIX

11-1 SINGLE MATERIAL BATCHING CONTROL SOFTWARE (OPTION)

This function will be deactivated if the software is not ordered.

Shifts to the higher digit every time from 10^0 digit to 10^4 digit by pressing the ZERO key.

Set the 10^0 or 10^1 digit, independent of step width or multiplier.

Shifts to a greater value every time from 0 to 9 by pressing the TARE key.

11-1-1 SETTING STEPS

Enter the single material batching setting: Press and hold MODE, then press ZERO key, 2 seconds later, displays "SET".

2 seconds later

2 seconds later

PT650D
<u> </u>

Step 1: Final setpoint setting

PT650D	TARE
<u> </u>	
	ZERO
	_ @

The display value is final setpoint when the annunciator of gross is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

PT650D	
<u>`</u> €00000	
	MODE

Accept the data by pressing MODE key.

Step 2: Optional preliminary setting(OP)

PT650D	
$\circ \underbrace{} \circ \circ \circ \circ \circ$	

The display value is optional preliminary when the annunciator of net is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

Accept the data by pressing MODE key.

Step 3: Preliminary setting(PL)

PT650D	
०००३४०००	
	ZERO

The display value is preliminary when the annunciator of motion is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

PT650D]
00 🔆 0 0 0	
	MODE
	اس ا

Accept the data by pressing MODE key.

Step 4: Free fall setting (FF)

PT650D	TARE
<u> </u>	
	ZERO

The display value is free fall when the annunciator of zero is flashing, select digit by pressing ZERO key and set the data by pressing TARE key.

PT650D	7
000 🔆 00	
	MODE

Accept the data by pressing MODE key.

Step 5: Zero band setting(ZB)

PT650D	
<u> </u>	

The display value is zero band when the annunciator of "kg" is flashing, select digit by pressing ZERO key and set the data by pressing TARE key. Note: Zero band is independent of the above setting.

Accept the data by pressing MODE key.

Step 6: Exit the signal material batching setting

Press MODE key to return to the normal weighing mode.

An error will occurs if the setting condition is not satisfied Final setpoint > Optional preliminary > Preliminary > Free fall, then press MODE key to restart from step 1 to step 5.

Net value \leq Zero band, ZB output Zero band < Net value < Optional preliminary, no output Optional preliminary \leq Net value < (Final – Preliminary), OP output (Final – Preliminary) \leq Net value < (Final – Free fall), OP and PL output (Final – Free fall) \leq Net value, OP, PL, FF output

11-1-2 SETTING BY USING RS232/RS485(only for RS232 or RS485 option is installed)

Setpoint setting can be activated by using RS232/RS485.

At normal weighing mode,

From RS232 port, input a command "SET<CR><LF>", the gross display will show "SET".

From RS485 port, input a command "<ENQ>IDXX<CR><LF>", indicator responds "<ACK>XX<CR><LF>", then input a command "SET <CR><LF>", the gross display will show "SET".

PT6	50I)				
0	0	0	0	0	0	
' <u>-</u>		<u> </u>				
]					

<u>Command input</u>	PT650D response			
<enq>IDXX<cr><lf>(RS485)</lf></cr></enq>	<ack>XX<cr><lf>(RS485)</lf></cr></ack>			
SET <cr><lf></lf></cr>				
	FINAL 12340 <cr><lf></lf></cr>			
Step 1: Final setpoint setting				
	EINIAI 11200-CD>-IE>			
In 1200 CR > LI >	TINAL 11200 CR-CLI-			
Input N for next step				
N <cr><lf></lf></cr>	OP. PRE 200 < CR > < LF >			
Step 2: Optional Preliminary setting (OP)				
250 <cr><lf></lf></cr>	OP. PRE 250 < CR > <lf></lf>			
Input N for next step				
N <cr><lf></lf></cr>	PRELIM 180 <cr><lf></lf></cr>			
Step 3: Preliminary setting (PL)				
200 < CR > < LF >	PRELIM 200 <cr><lf></lf></cr>			
Press N for next step				
N <cr><lf></lf></cr>	FREE FALL 50 <cr><lf></lf></cr>			
Step 4: Free fall setting (FF)				
30 < CR > <lf></lf>	FREE FALL 30 <cr><lf></lf></cr>			
Input N for next step				
N <cr><lf></lf></cr>	ZERO BAND 55 <cr><lf></lf></cr>			
Stan 5: Zero hand satting (ZB)				
Step 5. Zero band setting (ZD) 25 < CD > < LE >	ZEDO DAND 25 CDS ZUES			
	LERU BAIND 33~UK> <lf></lf>			
Input N for next step				
N <cr><lf></lf></cr>	FINAL 11200 <cr><lf></lf></cr>			

An error will occurs if the setting condition is not satisfied: Final>Optional preliminary>Preliminary>Free fall, input "N <CR><LF>" to restart from step 1 to step 5.

Step 6: Exit the setting

Input R to return to normal weighing condition. R<CR><LF> YES<CR><LF>

For example:	
Final setpoint	= 1000
Optional prelim.(OP)	= 500
Prelim.(PL)	= 200
Free fall(FF)	= 100
Zero band(ZB)	= 50

11-1-3 OUTPUT DESCRIPTION

OP	EN C	OLLI	ECTOR	INPU	JT			RS232	AN	ALC	G OUT	
Φ	\odot	$\overline{\mathbb{O}}$	$\overline{\mathbb{O}\mathbb{O}}$	$\overline{\mathbb{O}}$	$\bar{\mathbb{O}}$	DФ	Φ	DC)()(Ď	
ΗH	HI	LO	LL EMTR	R IN2	IN3		TXI	O RXD C	OM -	+ C	OM	

OP(=HH)	Optional preliminary
PL(=HI)	Preliminary
FF(=LO)	Free fall
ZB(=LL)	Zero band
EMTR COM	Common of OP, PL, FF, ZB

11-2 PT650D 110V AND 220V SETTING

• 220V setting:

ST1 should be in "220V".

• 110V setting:

ST1 should be in "110V".

11-3 STANDARD ASCII CODE TABLE

Character	Heuristicimal code	Decimal code		Description
^@	00	00	NUL	Null character
^A	01	01	SOH	Start of Header
^B	02	02	STX	Start of Text
^C	03	03	ETX	End of Text
^D	04	04	EOT	End of Transmission
^E	05	05	ENQ	Enquire
^F	06	06	ACK	Acknowledgement
^G	07	07	BEL	Bell
^H	08	08	BS	Backspace
·Ι	09	09	TAB	Tab characters
^J	0A	10	LF	Line Feed
^K	0B	11	VT	Vertical Tab
^L	0C	12	FF	Form Feed
^M	0D	13	CR	Carriage Return
^N	0 E	14	SO	Shift Out
^0	0F	15	SI	Shift In
^P	10	16	DLE	Data Link Escape
^Q	11	17	DC1	Device Control 1 (X-ON)
^R	12	18	DC2	Device Control 2
^S	13	19	DC3	Device Control 3 (X-OFF)
^T	14	20	DC4	Device Control 4
^U	15	21	NAK	Negative Ack
V	16	22	SYN	Synchronize
^W	17	23	ETB	End of Text Block
^X	18	24	CAN	Cancel
^Y	19	25	EM	End of Media
^Z	1A	26	SUB	Substitute
^[1B	27	ESC	Escape
^\	1C	28	FS	Form Separator
^]	1D	29	GS	Group Separator
~^	1E	30	RS	Record Separator
^	1F	31	US	Unit Separator

11-4 PT650D FUNCTION LIST

		Customer's files			
	No.	Description		Default	Customer's mes
F0	(0)	Exit setting	F0 = 0		
F1	(0-1)	Zero track time	F1 = 0	No track	
F2	(0-2)	Zero track band	F2 = 1	2 step width	
F3	(0-3)	Motion detection	F3 = 1	3 step width/sec	
F4	(0-5)	Multiplier or decimal point	F4 = 1	Decimal point	
F5	(0-2)	Division	F5 = 0	1 step width	
F6	(0-21)	Max. capacity	F6 = 11	10000	
F7	(0-3)	Baud rate	F7 = 2	9600 baud rate	
F8	(0 – 1)	RS232/RS485 output mode	F8 = 1	Command mode	
F9	(0 – 1)	Unit	F9 = 0	kg	
F10	(0-9)	Zero return range	F10 = 3	4%	
F11	(0-9)	Digital filter	F11 = 0	0	
F12	(0-4)	Display update rate	F12 = 4	20 times/sec	
F13	(0 – 7)	BCD output rate	F13 = 6	100 times/sec	
F14	(00 – 99)	RS485 ID code	F14 = 01	01	
F15	(0-6)	Peak hold	F15 = 0	No peak hold	
F16	(0 - 8)	Input 1	F16 = 0	Function	
F17	(0 - 8)	Input 2	F17 = 1	Zero return	
F18	(0-8)	Input 3	F18 = 2	Tare	
F19	(0-2)	Comparison condition	F19 = 0	Gross weight	

———————————

1. DESCIRPTION	1
1-1 Introduction	1
1-2 Definition	1
1-3 Features	2
2. SPECIFICATON	3
2-1 General	3
2-2 Digital section	3
2-3 Analog section	3
2-4 RS232/RS485 output (option)	4
2-5 Hi/LO setpoint output (option)	6
2-6 BCD output interface(option)	6
2-7 Analog output interface(option)	6
2-8 Input interface	6
3. OPERATION	7
3-1 General rules	7
3-2 Input sensitivity of load cell	7
3-3 Connecting the load cell to the indicator	8
4. DISPLAYS AND KEYS	9
4. DISPLAYS AND KEYS4-1 Display	9 9
 4. DISPLAYS AND KEYS	9 9 9
 4. DISPLAYS AND KEYS. 4-1 Display. 4-2 Front panel description. 4-3 Rear panel description. 	9 9 9 10
 4. DISPLAYS AND KEYS. 4-1 Display. 4-2 Front panel description. 4-3 Rear panel description. 5. FUNCTION SETTING. 	9 9 9 10 11
 4. DISPLAYS AND KEYS. 4-1 Display. 4-2 Front panel description. 4-3 Rear panel description. 5. FUNCTION SETTING. 5-1 Data setting. 	9 9 9 10 11 11

 6. CALIBRATION 6-1 During span setting 6-2 Setting steps 6-3 Error code during calibration 6-4 Calibration by using RS232/RS485 	21 21 21 25 26
7. DISPLAYED AND OUTPUT VALUES	29
8. SETTING THE SETPOINT	30
8-1 Setting steps8-2 Setting setpoint by using RS232/RS485	30 35
9. OUTPUT/INPUT	37
 9-1 Comparator output (option) 9-2 Input 9-3 RS232/RS485 output (option) 9-4 BCD data output interface (option) 9-5 Analog output interface (option) 	37 40 41 45 47
10. DIMENSION	49
11. APPENDIX	50
 11-1 Single material batching control software (option) 11-2 PT650D 110V and 220V setting 11-3 Standard ASCII code table 11-4 PT650D function list 	50 57 58 59

Note: All product improvement is authorized by **Chi Mei Electronics Co., Ltd.**, so no prior notice for technical improvement.

PT650D

WEIGHING INDICATOR

INSTRUCTION MANUAL

VER 2002

Chi Mei Electronics Co., Ltd.

Flat D, 13/F, Por Mee Fty.Bldg., 500 Castle Peak Road, Lai Chi Kok, Kowloon, Hong Kong Tel: (852)27444419 Fax: (852)27442060 E-mail: sales@chimei.com.hk Homepage: http://www.chimei.com.hk